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Abstract. A positroid variety is the set of points in a complex Grassmannian whose
matroid is a fixed positroid, in the sense of Postnikov. A positroid class is then the
cohomology class of a positroid variety. We define a family of representations of gen-
eral linear groups whose characters are the Schur-positive symmetric functions corre-
sponding to positroid classes. This gives a new algebraic interpretation of Schubert
times Schur structure coefficients, as well as the three-point Gromov-Witten invariants
for Grassmannians, proving a conjecture of Postnikov. As a byproduct we obtain an
effective recursion for decomposing positroid classes into Schubert classes.

Résumé. Une variété positroïde est un ensemble de points dans un Grassmannien
complexe dont le matroïde est un positroïde fixe, dans le sens de Postnikov. Une classe
positroïde est alors la classe de cohomologie d’une variété positroïde. On définit une
famille de représentations de groupes généraux linéaires dont les caractères sont les
fonctions Schur-positives symmétriques correspondant aux classes positroïdes. Cela
donne une nouvelle interprétation algébrique au coefficients de structure Schubert fois
Schur, ainsi qu’aux invariants à trois points de Gromov-Witten pour les Grassman-
niens, prouvant une conjecture de Postnikov. Comme conséquence, on obtient une
récursion effective pour décomposer les classes positroïdes en classes de Schubert.

1 Introduction

Let GrK(k, n) denote the Grassmannian of k-planes in Kn for a field K, or simply Gr(k, n)
in the case K = C. The matroid of V ∈ GrK(k, n) is the set of k-subsets I ⊆ [n] :=
{1, 2, . . . , n} such that some (any) matrix whose rowspan is V has nonzero maximal
minor in columns I.

Definition 1.1. The totally nonnegative Grassmannian GrR(k, n)+ is the set of k-planes
V = rowspan(A) where all the maximal minors of A are nonnegative. A positroid is the
matroid of a member of GrR(k, n)+.

Postnikov [12] gave several combinatorial objects which are in bijection with positroids,
and used them to describe the locus of points in GrR(k, n)+ whose matroid is a fixed
positroid. Knutson, Lam, and Speyer [5] studied the following complex analogue of
Postnikov’s positroid cells.
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Definition 1.2. The positroid variety ΠM ⊆ Gr(k, n) of a positroid M ⊆ ([n]k ) is the Zariski
closure of the set of k-planes with matroid M.

Let Λ(k) denote the ring of symmetric polynomials Z[x1, . . . , xk]
Sk , and Λn−k(k) the

quotient by the ideal generated by the homogeneous symmetric polynomials hd(Xk) for
d > n− k. The ring Λn−k(k) is isomorphic to the integral cohomology ring of the Grass-
mannian Gr(k, n) of k-planes in Cn, and under this isomorphism the cone of cohomology
classes Poincaré dual to subvarieties of Gr(k, n) corresponds to the cone of Schur-positive
elements in Λn−k(k) [3].

Definition 1.3. For a positroid M ⊆ ([n]k ), let GM ∈ Λn−k(k) represent the cohomology
class of the positroid variety ΠM.

The Schur-positive elements GM ∈ Λn−k(k) are the central objects of this paper. Via
taking characters, the Grothendieck ring of finite-dimensional complex polynomial rep-
resentations of GL(Ck) is isomorphic to Λ(k), and our main result writes GM as the
character of a certain representation of GL(Ck), which we now define.

Definition 1.4. A diagram is a finite subset of Z2.

Given a diagram D, let SD be the group of permutations of D. Let R(D) (respectively
C(D)) be the stabilizer in SD of the partition of D into rows (respectively columns). The
Young symmetrizer of D is then yD = ∑p∈R(D) ∑q∈C(D) sgn(q)qp ∈ C[SD].

For a complex vector space V, let V⊗D be the |D|-fold tensor product of V, except
that we think of the tensor factors as labeled by cells in D (coming in some fixed order)
rather than 1, 2, . . . , |D|. The group SD acts on V⊗D on the right, while GL(V) acts on
the left, and these two actions commute.

Definition 1.5. The Schur module V[D] associated to D is the left GL(V)-module V⊗DyD.

In cases which are understood, the algebraic properties of V[D] tend to reflect inter-
esting combinatorics relating to the diagram D, but there is no general combinatorial
description of the irreducible decomposition of V[D] or its character. For instance, when
D is a skew Young diagram λ \ µ, the character of V[D] is the skew Schur polynomial
sλ\µ(x1, . . . , xk).

Example 1.6. The Rothe diagram of a permutation w ∈ Sn is D(w) = {(i, w(j)) ∈ [n]2 :
i < j, w(i) > w(j)}. It follows from [6, 13] that the character of V[D(w)] is the Stanley
symmetric function Fw(x1, . . . , xk) (see Definition 2.6 below).

Our main result can be viewed as a generalization of Example 1.6 as follows. To each
positroid M ⊆ ([n]k ), Knutson, Lam, and Speyer [5] associate a certain affine permutation
fM, i.e. a bijection Z → Z satisfying the quasi-periodicity property that fM(i + n) =
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fM(i) + n for all i. They also prove that GM is the image in Λn−k(k) of the affine Stanley
symmetric function F̃fM . Now define the Rothe diagram of fM as in Example 1.6, but
viewed as a finite subset of the cylinder Z2/Z(n, n) (this will cause no difficulties in
defining the Schur module V[D( fM)]).

Theorem 1.7. For any positroid M ⊆ ([n]k ), the image of the character of V[D( fM)] in Λn−k(k)
is GM.

See Remark 5.2 for a nicer way to phrase Theorem 1.7, by slightly modifying the
notion of Schur module so that the character naturally lies in Λn−k(k) rather than Λ(k).

Besides being certain intersection numbers for ΠM, the Schur coefficients of GM have
many other interpretations, and Theorem 1.7 provides an algebraic proof of the nonnega-
tivity of these integers. All of the following can be described as certain Schur coefficients
of GM:

(a) The 3-point Gromov-Witten invariants for Gr(k, n);

(b) The Schubert coefficients in the product of a Schubert polynomial and a Schur poly-
nomial;

(c) The Schur coefficients of the image of an affine Stanley symmetric function in Λn−k(k);

(d) The Schur coefficients of the symmetric function ∑c QDes(c), where QD is Gessel’s
fundamental quasisymmetric function and c runs over maximal chains in an interval
in Bergeron and Sottile’s k-Bruhat order.

To elaborate on (a), Postnikov defined certain finite subsets D of the cylinder Z2/Z(k, n−
k) called toric skew shapes, and associated to D the toric Schur polynomial sD(x1, . . . , xk),
the weight-generating function for semistandard fillings of D. He showed that the Schur
coefficients of toric Schur polynomials are the 3-point Gromov-Witten invariants for
Gr(k, n), and gave a conjectural representation-theoretic interpretation.

Conjecture ([11], Conjecture 10.1). For a toric skew shape D ⊆ Z2/Z(k, n− k), the toric
Schur polynomial of D is the character of V[D], where dim V = k.

We will see (Theorem 6.4) that Postnikov’s conjecture follows as a special case of
Theorem 1.7.

There is an effective recursion for computing the Schur expansion of a Stanley sym-
metric function Fw based on the so-called transition formula of Lascoux and Schützen-
berger [9]. They construct a tree of permutations with root w such that for any node
v, Fv = ∑v′ Fv′ where v′ runs over children of v′, and show that any sufficiently long
path from the root leads to a node v such that Fv is a single, easily-described Schur func-
tion. We construct a similar tree for the functions GM, providing an effective (although
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no longer positive) recursion for computing the Schur expansion of GM. The proof of
Theorem 1.7 proceeds by constructing a filtration of V[D( fM)] which, at the level of
characters, matches this recursion for GM.

In Section 2, we recall some background on affine permutations, and prove basic
facts about affine Stanley symmetric functions. In Section 3, we prove an analogue of
Lascoux-Schützenberger’s transition formula for the symmetric functions GM. Section 4
is devoted to Schur modules, and contains the main tools we use to relate the combi-
natorics of a diagram D to the algebra of V[D]. We then apply these tools to Schur
modules of affine Rothe diagrams in Section 5 and prove Theorem 1.7. Finally, Section 6
describes some applications of our results, including a proof of Postnikov’s conjecture
on toric Schur modules.

2 Background

2.1 Affine permutations

Let n be a positive integer. An affine permutation of quasi-period n is a bijection f : Z→ Z

satisfying f (i + n) = f (i) + n for all i. We write S̃n for the group of all affine permuta-
tions. We specify an affine permutation f by the word f (1), . . . , f (n), since this uniquely
determines f , writing x for −x. For instance, f = 6451 is the affine permutation with
f (1) = 6, f (4) = −1, f (8) = 3, and so on.

Definition 2.1. Given k, m ∈ Z, let Ck,m denote the cylinder Z2/Z(k, m).

It is natural to view the graph of f ∈ S̃n as a subset of Cn,n, namely {(i, f (i)) ∈ Cn,n :
i ∈ Z}. For i ∈ Z, let si ∈ S̃n be the transposition interchanging i + pn and i + 1 + pn
for all p ∈ Z and fixing all other integers, and let τ ∈ S̃n be the shift map τ : i 7→ i + 1.
Let S̃0

n := 〈s0, s1, . . . , sn−1〉, and define av : S̃n → Z by av( f ) = 1
n ∑n

i=1( f (i)− i).

Proposition 2.2. S̃n is the semidirect product S̃0
n o 〈τ〉, and av is the projection onto

〈τ〉 ' Z.

The group S̃0
n is a Coxeter group (the affine Weyl group of type Ãn). By Propo-

sition 2.2, every f ∈ S̃n can be written uniquely as τ jg where g ∈ S̃0
n, and we will

implicitly extend many notions of Coxeter combinatorics from g to f : the Coxeter
length `(g) = `( f ), descents, reduced words, Bruhat order, and so on. The subgroup
〈s1, . . . , sn−1〉 of S̃n is isomorphic to Sn, and we will frequently identify the two.

Definition 2.3. An affine permutation f ∈ S̃n is bounded if i ≤ f (i) ≤ i + n for all i ∈ Z.
Let Bound(n) ⊆ S̃n denote the subset of bounded permutations, and Bound(k, n) the set
of f ∈ Bound(n) such that exactly k of f (1), . . . , f (n) exceed n.

For instance, 5724 ∈ Bound(2, 4). By [5, Theorem 3.1], Bound(k, n) is in bijection with
the rank k positroids on [n].
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2.2 Affine Stanley symmetric functions

Definition 2.4. A cyclically decreasing affine permutation is one of the form f = si1 · · · sik
where all entries of the sequence i1, . . . , ik are distinct, and such that if any j and j + 1
both appear in the sequence, then j + 1 appears first.

Example 2.5. s1s0s3 ∈ S̃4 is cyclically decreasing, but s1s3s0 and s3s0s3 are not.

A factorization f = f1 · · · fp where f , f1, . . . , fp ∈ S̃0
n is length-additive if `( f ) =

∑
p
i=1 `( fi).

Definition 2.6 ([7]). The affine Stanley symmetric function of f ∈ S̃n is the power series

F̃f = ∑
( f1,..., fp)

x`( f1)
1 · · · x`( fp)

p

running over all length-additive factorizations τ− av( f ) f = f1 · · · fp such that each fi is
cyclically decreasing.

It is shown in [7] that F̃f ∈ Λ. When f ∈ 〈s1, . . . , sn−1〉 ' Sn, affine Stanley symmetric
functions agree with the symmetric functions introduced by Stanley in [14] (except that
Stanley’s Gw is our F̃w−1). Observe that the coefficient of a squarefree monomial in F̃f is
the number of reduced words of f .

For f ∈ Sn, the results of [2] imply that F̃f is Schur-positive, but this need not hold
for general affine f ; for instance, F̃5274 = s22 + s211 − s1111. However, it turns out that a
predictable subset of the Schur coefficients of F̃f are nonnegative. Let trunck,n−k be the
quotient map Λ→ Λn−k(k).

Definition 2.7. Given f ∈ S̃n and 0 ≤ k ≤ n, define G f ,k = trunck,n−k F̃f ∈ Λn−k(k). We
usually suppress the dependence on k and simply write G f .

Theorem 2.8 ([5], Theorem 7.1). If f ∈ Bound(k, n), then G f ,k ∈ Λn−k(k) represents the
cohomology class of a positroid variety. In particular, G f ,k is Schur-positive and nonzero.

Let T = 〈τ〉. Since F̃f = F̃τ f , it holds more generally that G f ,k is Schur-positive and
nonzero whenever f ∈ T Bound(k, n). As we will see, this is a necessary condition.

Definition 2.9. The Rothe diagram of f ∈ S̃n is the set D( f ) = {(i, j) ∈ Cn,n : j < f (i), i <
f−1(j)}.

Observe that D( f ) has size `( f ), the number of inversions of f . Given Theorem 1.7,
it is no surprise that properties of F̃f and G f can be deduced from properties of D( f ), as
in the next two theorems.

Theorem 2.10. Let f ∈ S̃n. Then f ∈ T Bound(k, n) if and only if every row of D( f ) has at
most n− k cells, and every column has at most k cells.

Theorem 2.11. G f ,k 6= 0 if and only if f ∈ T Bound(k, n).
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3 Recurrences for affine Stanley symmetric functions

Given integers i < j for which i 6≡ j (mod n), let tij ∈ S̃0
n be the transposition interchang-

ing i + pn and j + pn for all p ∈ Z. We use < to denote the strong Bruhat order on S̃n,
i.e. the partial order with covering relations f l f tij whenever `( f tij) = `( f ) + 1. Define
sets

BΦ+( f , r) = { f trj ∈ Bound(n) : r < j and f l f trj}
BΦ−( f , r) = { f tir ∈ Bound(n) : i < r and f l f tir}.

BCovr( f ) = {(i, j) ∈ [n]×Z : f l f tij ∈ Bound(n) and [i, j) contains r modulo n}.

Our proof of Theorem 1.7 will be inductive, using two key recursions.

Lemma 3.1. For f ∈ Bound(k, n) and any r, the following two identities hold in Λn−k(k):

s1G f = ∑
(i,j)∈BCovr( f )

G f tij and ∑
g∈BΦ−( f ,r)

Gg = ∑
g∈BΦ+( f ,r)

Gg.

Proof. Subtracting the first identity with parameter r + 1 from the first identity with pa-
rameter r gives the second identity. The first identity follows by applying Theorem 2.11
to a similar formula in [8] expressing s1F̃f as a linear combination of F̃g.

The maximal inversion of f ∈ T Bound(k, n) is the lexicographically maximal pair (r, s)
with 1 ≤ r < s ≤ n and f (r) > f (s). If no such pair exists, we say f is 0-Grassmannian.

Definition 3.2. The bounded affine Lascoux-Schützenberger (L-S) tree tree of f is a tree with
root f whose vertices are labeled by elements of Bound(k, n) and whose edges are labeled
by + or −, defined as follows:

• If a vertex g is 0-Grassmannian, then g has no children;

• If g is not 0-Grassmannian, then g has children BΦ−( f trs, r) (via edges labeled +)
and BΦ+( f trs, r) \ { f } (via edges labeled −).

The maximality of (r, s) implies that f l f trs, and hence f ∈ BΦ+( f trs, r). Solving for
G f in the second identity of Lemma (3.1) yields the next proposition.

Proposition 3.3. If g is any non-leaf vertex of a bounded affine L-S tree, then Gg =

∑h+ Gh+ − ∑h− Gh− where h+ and h− run over the children of g connected by edges
labeled + and − respectively.

Theorem 3.4. The bounded affine L-S tree of any f ∈ Bound(k, n) is finite.

Proof. One checks that if g is a child of f , then either the word f (1) · · · f (n) has fewer in-
versions than g(1) · · · g(n), or they have the same number of inversions and g(1) · · · g(n)
is lexicographically larger than f (1) · · · f (n).
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If f ∈ Bound(k, n) is 0-Grassmannian, its Rothe diagram D( f ) is, after deleting empty
rows and columns, a French-style Young diagram of a partition λ( f ) ⊆ (n− k)k, the shape
of f .

Lemma 3.5. If f ∈ Bound(k, n) is 0-Grassmannian, then G f = sλ( f ), which is nonzero in
Λn−k(k).

Given a path π in a graph with edges labeled by ±, let sgn(π) be the product of the
edge labels. The next theorem follows inductively from Proposition 3.3 and Theorem 3.4,
using Lemma 3.5 as a base case.

Theorem 3.6. Given a vertex g of the bounded affine L-S tree of f ∈ Bound(k, n), let πg denote
the unique path from the root f to g. Then G f = ∑g sgn(πg)sλ(g), where g runs over the leaves
of the tree.

When f ∈ Sn, the L-S tree has no edges labeled −, and so Theorem 3.6 exhibits
G f = Ff as Schur-positive. In the general affine case the Schur-positivity of G f is not
clear from Theorem 3.6, but that recurrence is still a much more effective means of
computing G f than the definition in terms of cyclically decreasing factorizations.

4 Generalized Schur modules

Definition 4.1. A cylindric diagram is a finite subset of a cylinder Ck,m. A cylindric di-
agram D is toric if the restriction of the quotient map ρ : Ck,m → Z2/(kZ × mZ) is
injective on D.

Observe that a cylindric diagram D has well-defined rows and columns, so one can
again associate to D its Young symmetrizer yD ∈ C[SD] and Schur modules V[D].

Lemma 4.2. Let D be a cylindric diagram. If D is not toric, then V[D] = 0, while if D is toric,
then V[D] ' V[ρ(D)].

Lemma 4.2 implies that all nonzero cylindric Schur modules are in fact ordinary
Schur modules, but it will be more natural to work directly with cylindric diagrams.

Definition 4.3. Two ordinary diagrams are equivalent if they are conjugate under the
action of SZ × SZ on Z2. Equivalent diagrams have the same partitions into rows and
columns, and hence isomorphic Schur modules.

The next lemma is a key tool for decomposing Schur modules of diagrams, and all of
our technical results depend on it. For simplicity we will state definitions and theorems
in this section in terms of ordinary diagrams, but one could just as well phrase them for
toric diagrams. Given two ordered pairs x = (i, j) and x′ = (i′, j′), write x|x′ = (i, j′).
For a diagram D ⊆ Z2 and ordered pairs x = (i, j) and x′ = (i′, j′), let Rx′

x D be the
diagram such that:
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• If p /∈ {i, i′}, then (p, q) ∈ Rx′
x D if and only if (p, q) ∈ D;

• (i, q) ∈ Rx′
x D if and only if (i, q), (i′, q) ∈ D;

• (i′, q) ∈ Rx′
x D if and only if (i, q) or (i′, q) is in D.

One checks that Rx′
x D has the same size as D. Define Cx′

x D by modifying columns j and
j′ analogously. We call the operators Rx′

x and Cx′
x James-Peel moves.

Lemma 4.4 ([4], Theorem 2.4). Let D be a diagram, and x, x′ any two points in Z2. Then
V[Cx′

x D] ⊆ V[D], and there exists a surjective homomorphism φx′
x : V[D] � V[Rx′

x D]. If
moreover x, x′ ∈ D but x|x′, x′|x /∈ D, then V[Cx′

x D] ⊆ ker φx′
x . In particular, over C one

concludes in the latter case that V[Rx′
x D]⊕V[Cx′

x D] ↪→ V[D].

For an ordinary diagram D ⊆ [k]× [m], let � ∗ D be the union of D with any point
not in [k]× [m] (note that two different choices of point give equivalent diagrams). One
can check from the definitions that ch V[� ∗ D] = s1(Xk) ch V[D]. The next definition
and lemma, which appear in a dual form as [10, Proposition 3.2], should be viewed as a
generalization of Pieri’s rule for computing the Schur expansion of s1sλ.

A subset ∆ ⊆ Z2 is a transversal if no two of its points are in the same row or column.
For two sets X, Y ⊆ Z2, define X|Y = {x|y : x ∈ X, y ∈ Y}.

Definition 4.5. A corner configuration for a diagram D is a pair (a, ∆) where ∆ ⊆ Z2 is
a totally ordered set, a ∈ Z2, and (a) {a} ∪ ∆ is a transversal disjoint from D; (b) {a}|∆
and ∆|{a} are disjoint from D; (c) if x < y are in ∆, then y|x ∈ D.

Lemma 4.6. If (a, ∆) is a corner configuration for D, then
⊕

x∈∆ V[(D ∪ a)a→x] ↪→ V[� ∗D].

Unfortunately, Lemma 4.6 is too weak for our purposes; we will need to consider
multiple interacting corner configurations.

Definition 4.7. A system of corner configurations for a diagram D is a finite totally ordered
set K of corner configurations such that {a : (a, ∆) ∈ K} is a transversal, and for all
(a, ∆a), (b, ∆b) ∈ K, one has (a) {a} ∪ ∆b is a transversal; and (b) if (a, ∆a) < (b, ∆b) and
x ∈ ∆a, y ∈ ∆b, then {b, y}|{a, x} intersects D.

Lemma 4.8. Let K be a system of corner configurations for a diagram D. Then⊕
(a,∆)∈K

x∈∆

V[(D ∪ a)a→x] ↪→ V[� ∗ D].
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5 Schur modules of Rothe diagrams

Say V is a k-dimensional complex vector space. Recall that the character of a complex
representation ρ : GL(V) → GL(U) of GL(V) is the function ch(U) : (x1, . . . , xk) 7→
tr ρ(diag(x1, . . . , xk)), where diag(x1, . . . , xk) ∈ GL(V) is the diagonal matrix with diag-
onal entries x1, . . . , xk, having chosen a basis for V. If U is a polynomial representation,
meaning that upon choosing bases, the entries of the matrices ρ(g) for g ∈ GL(V) are
polynomials in the entries of g, then ch(U) ∈ Λ(k).

Two polynomial (or rational) representations of GL(V) are isomorphic if and only if
their characters are equal, and the irreducible polynomial representations of GL(V) have
characters sλ(Xk) for λ such that `(λ) ≤ k. This reduces the decomposition of GL(V)-
modules to symmetric polynomial calculations. Having fixed k = dim V and n, we let
ch U = trunck,n−k ch U for a GL(V)-module U. Call this the truncated character of U. The
next theorem is our main result.

Theorem 5.1 (Restatement of Theorem 1.7). G f = ch V[D( f )] for any f ∈ Bound(k, n).

Remark 5.2. We briefly describe a modification of the setting of polynomial representa-
tions and Schur modules in which the truncated character operation ch becomes more
natural. Let T(V) be the tensor algebra of V. Say a pure tensor x ∈ Td(V) = V⊗d

is `-symmetric if its stabilizer under the right action of Sd contains the subgroup of all
permutations fixing some `-subset of [d]. Let I(m) ⊆ T(V) be the ideal spanned by all
(m + 1)-symmetric tensors, and define the truncated Schur module Vm[D] as the image of
V[D] ⊆ T(V) under the quotient map T(V) → T(V)/I(m). Let R be the Grothendieck
group of GL(V)-submodules of T(V)/I(m), made into a ring not by the ordinary tensor
product, but using the multiplication in T(V)/I(m). Then ch : R → Λm(k) is a ring
isomorphism, and a more natural statement of Theorem 5.1 is that G f = ch Vn−k[D( f )].

Our strategy for proving Theorem 5.1 is to show that ch V[D( f )] satisfies the recur-
rences described for G f in Section 3. Namely:

Lemma 5.3. If f ∈ Bound(k, n) and r ∈ Z, then⊕
(i,j)∈BCovr( f )

V[D( f tij)] ↪→ V[� ∗ D( f )].

This lemma follows by applying Lemma 4.8 to an appropriate system of corner con-
figurations for D( f ); we omit the details.

Let H f = ch V[D( f )]. Let δ : Λn−k(k) → Z be the linear map sending s̄λ to f λ∨ , the
number of standard Young tableaux of shape λ∨ := ([k]× [n− k]) \ λ. (Geometrically,
δ maps the cohomology class of a subvariety to its degree as a projective variety.) To
prove H f = G f , we exploit the fact that that if F is Schur-nonnegative, then δ(F) ≥ 0
with equality if and only if F = 0. The next lemma can be deduced by two inductions
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on the order <r, treating the maximal and minimal elements on their own, together with
Lemmas 3.1 and 5.3.

Lemma 5.4. For any f ∈ Bound(k, n), δ(H f ) = δ(G f ) and ∑(i,j)∈BCovr( f ) H f tij = s̄1H f .

Thus, H f satisfies the recurrences derived for G f in Section 3, and so H f = G f will
follow if it holds in the base case when f is 0-Grassmannian, say of shape λ. But in that
case, G f = s̄λ = ch V[λ] = H f . This proves the main theorem.

Theorem. For any f ∈ Bound(k, n), G f = H f = ch V[D( f )].

6 Applications

6.1 Toric Schur polynomials

A closed lattice path P in Ck,n−k is a circular sequence (p1, . . . , pn) labeled by Z/nZ such
that pi+1− pi ∈ {(±1, 0), (0,±1)} for all i. If pi+1− pi ∈ {(1, 0), (0, 1)} for all i, we say P
moves from northwest to southeast. We think of P as the path obtained by concatenating
the line segments from pi to pi+1 for all i.

Definition 6.1. A cylindric skew shape is the set of unit squares [i, i + 1] × [j, j + 1] in a
cylinder Ck,n−k between two closed lattice paths moving from northwest to southeast
which do not cross (though they can meet).

Any cylindric skew shape is a cylindric diagram. A filling of a cylindric skew shape
Θ by positive integers is a semistandard tableau if it is weakly increasing rightward across
rows, and strictly increasing up columns. As usual, a semistandard tableau is standard if
it uses exactly the integers 1, 2, . . . , |Θ|.
Definition 6.2 ([11]). The cylindric Schur function associated to a cylindric skew shape
Θ is the formal power series sΘ := ∑T xT, where T runs over semistandard tableaux of
shape Θ.

If the cylindric skew shape Θ ⊆ Ck,n−k is a toric diagram, call the polynomial sΘ(Xk)
a toric Schur polynomial. Cylindric Schur functions were introduced by Postnikov [11],
and the next theorem summarizes one of his main results.

Theorem 6.3 ([11]). If Θ ⊆ Ck,n−k is a toric skew shape, then sΘ(Xk) is Schur-positive. More-
over, for Θ ranging over toric shapes in Ck,n−k, the Schur coefficients of sΘ(Xk) are exactly the
3-point Gromov-Witten invariants for Gr(k, n).

Postnikov conjectured that for any toric skew shape Θ, the toric Schur polynomial
sΘ(Xk) is the character of the Schur module V[Θ] [11, Conjecture 10.1]. Lam [7] showed
that sΘ is an affine Stanley symmetric function, and via that connection and Theorem 1.7,
we deduce Postnikov’s conjecture.

Theorem 6.4. Let Θ ⊆ Ck,n−k be a toric diagram. Then sΘ(Xk) = ch V[Θ].
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6.2 Schubert times Schur coefficients

Let Sw ∈ Z[x1, x2, . . .] denote the Schubert polynomial associated to w ∈ S∞, the group
of permutations of N fixing all but finitely many points. Since Schubert polynomials
form a Z-basis of Z[x1, x2, . . .], one can write SuSv = ∑w cw

u,vSw for some integers cw
u,v.

In fact, cw
u,v ≥ 0 for geometric reasons, and it is a major open problem in algebraic

combinatorics to describe the cw
u,v combinatorially. In this section we given an algebraic

interpretation of some of these Schubert structure coefficients.
Given λ ⊆ (n− k)k, let w(λ) denote the unique k-Grassmannian permutation in Sn

with Rothe diagram equivalent to λ. Then Sw(λ) is the Schur polynomial sλ(x1, . . . , xk),
and so we call the coefficients cv

u,w(λ) Schubert times Schur coefficients. If λ ⊆ (n− k)k, let

λ∨ = ([k]× [n− k]) \ λ. To each pair u, v such that cv
u,w(λ) 6= 0 for some λ ⊆ (n− k)k (so

u ≤k v are comparable in the k-Bruhat order ≤k of [1]), Knutson-Lam-Speyer [5] associate
an affine permutation fu,v ∈ Bound(k, n); we omit the details.

Proposition 6.5. If u ≤ v, then G fu,v = ∑λ⊆(n−k)k cv
u,w(λ)sλ∨ .

Proof sketch. It is shown in [5] that the positroid varieties Π f is the image of a Richardson
variety (indexed by u, v) in the complete flag variety Fl(n) under the projection Fl(n)→
Gr(k, n). The proposition follows by comparing interpretations of cv

u,w(λ) and the Schur
coefficients of G fu,v as intersection numbers in Gr(k, n).
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